Leaf description

• morphology:

leaves coriaceous; organisation: simple; petiole: long-petiolate; shape: slender, oblong to slender elliptic to somewhat obovate, up to 100 or rarely 130 mm long, size rather variable; leaf base: base angle narrow acute, shape cuneate, decurrent, leaf base not distinctly offset from the petiole; leaf apex: angle acute; shape straight to slightly convex, utmost apex bluntly acute; margin: untoothed in the lowermost third; leaf teeth widely, sometimes more or sometimes less regularly spaced, small; tooth apex bluntly acute to rounded, sinus rounded or acute; 1°-vein framework: primary veins pinnate, midvein strong, straight to sometimes bent; 2°-vein framework: secondaries already much less distinct, (semi)craspedodromous to weak brochidodromous, arising at wide angles from the midvein, 1–3 intersecondaries between adjacent secondaries; 3°-vein framework: tertiaries reticulate.

• cuticle:

Usually the cuticles of both sides are preserved in small fragments only, cuticle thickness medium, cuticle surface even and smooth; **adaxial cuticle:** anticlines straight to smoothly rounded, slender and smooth forming polygonal cell outlines, about 15–25 μ m (rarely even larger) across, two-celled trichome bases occur sporadically (for description see abaxial cuticle); **abaxial cuticle:** anticlines and cell-outlines very similar to those on the adaxial cuticle, stomatal complexes anomocytic, randomly distributed, sometimes densely spaced, stoma shape roundish, about 15–30 μ m in diameter, front cavity oval to roundish, stomatal ledges weakly cutinised; trichome bases oval to roundish, up to 25 or even 30 μ m in diameter, consisting of two strongly thickened foot cells, surrounding trichome base cells hardly modified to somewhat radially elongated; trichome head pluricellular, peltate, consisting of several radiating cells, shield about 50–100 μ m in diameter.

Palecology

- habitat: characteristic of wetland and swamp habitats. Due to its accessorical character, it probably was more an element of mesophytic forests than of wetland habitats.
- vegetation type: ?
- life form: small tree, shrub
- foliage persistence: probably evergreen leaves
- flower ecology (pollination): wind-pollinated (anemophilous)
- fruit ecology (dispersal): animal-dispersed (endozoochorous)

Stratigraphy / Distribution

- **stratigraphy:** Oligocene to Miocene
- distribution: widespread in Europe, very common in lignitic facies

Miscellaneous

• synonyms: -

- modern relationship: *Myrica* subgen. Morella, sect. Cerophora, *Myrica cerifera* L. The species *Myrica faya* DRYAND. formerly was also classified in the section Cerophora, but according to newer taxonomy it is now a member of the separate section Faya.
- remarks: These leaves have a rather wide variability including both toothed and untoothed forms. Also their size is rather variable. The coriaceous texture often obscures the delicate secondaries. Leaves of *Quercus drymeja* may be difficult to differentiate from *M. lignitum*. The two-celled trichome bases and peltate trichome heads enable the unambiguous assignment of these leaves to *Myrica*. Often only the trichome bases are preserved and, if the shield is present, its pluricellular radiating structure may not be discernable. *Myrica lignitum* may be very abundant or even dominant in plant assemblages representing wetland and swamp habitats. Fruits called *M. ceriferiformis* KOWNAS often cooccur with leaves of *M. lignitum*. Probably both derive from the same plant.

#	trait code	trait: charcters state
1	A-1.2	petiole: present
2	A-1.2.2	petiole, present: long
3	A-2.1	leaf organisation: simple
4	A-3.1	leaf shape: elliptic
5	A-4.1	leaf base angle: acute
6	A-5.1	leaf base shape: without basal extension
7	A-5.1.1	leaf base shape, without basal extension: cuneate (straight)
8	A-6.2	leaf apex angle: obtuse
9	A-7.3	leaf apex shape: rounded
10	A-8.2	leaf margin: toothed
11	A-9.2.2	leaf teeth, tooth density: not dense
12	B-1.1	primary vein framework: pinnate
13	B-2.3	secondary vein framework: 2° veins form loops and do not reach margin
14	B-2.3.1	secondary vein framework, 2° veins form loops and do not reach margin:
		brochidodromous
15	B-3.2	intramarginal vein: absent
16	B-4.2	intersecondaries: absent
17	B-5.1	tertiary vein framework: percurrent
18	B-5.1.2	tertiary vein framework, percurrent: alternate

18 macroscopic leaf traits are stored in Digiphyll

For a detailed description of the leaf traits see menu Manuals.

? microscopic leaf traits are stored in *Digiphyll*

comming soon

Fossil images

References

- Ettingshausen C.v. & Standfest F. (1888): Über Myrica lignitum Ung. und ihre Beziehungen zu den lebenden Myrica-Arten. Denkschriften der kaiserlichen Akademie der Wissenschaften, math.naturwiss. Cl., 54: 255-260.
- Kovar J. (1982): Eine neue Blätter-Flora des Egerien (Ober-Oligozän) aus marinen Sedimenten der Zentralen Paratetethys im Linzer Raum (Österreich). – Beiträge zur Paläontologie von Österreich, 9: 1-134.
- Kovar-Eder J., Kvaček Z. & Ströbitzer-Hermann M. (2004): The Miocene Flora of Parschlug (Styria, Austria) Revision and Synthesis. Annalen des Naturhistorischen Museums Wien, 105 A: 45-159.
- Kvaček (1976): ?
- Unger F. (1841-47): Chloris protogaea. Beiträge zur Flora der Vorwelt. Engelmann, Leipzig.
- Zidianakis G., Iliopoulos G., Zelilidis A. & Kovar-Eder J. (2015): Myrica from the plant assemblage of Pitsidia (Crete, late Miocene): putting the puzzle together. *Palaeontographica*, Abt. B, 293: 149-171.

Version: 2019-04-30